Real-time observation of surface chemical reaction at millisecond resolution by means of soft X-ray dispersive XAFS Kenta Amemiya,¹ Yuka Kousa,² Shuichi Nakamoto,² Taiga Harada,² Shogo Kozai,² Masaaki Yoshida,² Hitoshi Abe,^{1,2} Ryohei Sumii,¹ Masako Sakamaki,¹ Kazuma Suzuki,² Hiroshi Kondoh,² Tsuneharu Koide,¹ Kenji Ito,¹ Kimichika Tsuchiya,³ Kentaro Harada,³ Hiroyuki Sasaki,³ Tomohiro Aoto,³ Tatsuro Shioya,³ Takashi Obina,³ Shigeru Yamamoto¹ and Yukinori Kobayashi³ ¹Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, 305-0801 Ibaraki, Japan ²Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, 223-8522 Yokohama, Japan ³Accelerator Laboratory, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, 305-0801 Ibaraki, Japan A dispersive XAFS technique in the soft X-ray region has been developed, as illustrated in Fig. 1, to realize the real-time observation of surface chemical reactions at one event, and a time resolution of 33 ms [1] or faster has been achieved. The observation of the CO oxidation reaction on Ir(111) surface is shown in Fig. 2 as an example. The coverage of each species at the surface during the reaction is quantitatively estimated from a series of XAFS spectra. Moreover, the observation of the changes in the molecular orientation within one reaction has been also achieved [2] by combing the dispersive XAFS technique with polarization switching [3] between the horizontal and vertical linear polarizations. **Fig. 1.** Schematic layout for dispersive XAFS measurement. The position, x', on the sample surface corresponds to the photon energy. The Auger electrons emitted at x' after X-ray absorption are separately corrected at x on the two-dimensional detector, yielding the XAFS spectrum. **Fig. 2.** Three-dimensional plot of O K-edge XAFS spectra taken at every 33 ms during the exposure of O/Ir(111) surface to 4×10^{-7} Torr CO at 400 K. ^[1] K. Amemiya et al., Appl. Phys. Lett. 99, 074104 (2011). ^[2] K. Amemiya et al., Appl. Phys. Lett. 101, 161601 (2012). ^[3] K. Amemiya et al., J. Phys.: Conf. Ser. 425, 152015 (2013).