
The origin of the intraband plasmons on Au/Si(5512) surface

J. G. Kim, S. J. Sung, P. R. Lee, M. T. Ryu, H. M. Park, S. Y. Shin and J. W. Chung

Department of Physics, Pohang University of Science and Technology, Pohang, 790-784, Kyungbuk, KOREA

We have investigated the electronic excitations for several Au-induced facet structures formed on the Si(5512) surface using high-resolution electron-energy-loss spectroscopy (HREELS). We find a characteristic loss peak from each of the three metallic surfaces, the (337)x2, the (5511), and the Au/Si(557). These loss peaks are identified as one-dimensional (1D) intraband plasmons and their energy-momentum dispersions appear to be quite similar, and are well described by the RPA theory when the Rashba spin-orbit interaction is included. This strongly suggests that they stem from the same origin of the Au-Si band split by the spin-orbit interaction rather than from the band associated with step-edge atomic chains. In addition, we find a weakly dispersing loss peak from the semiconducting (225) facets, which is attributed to an interband transition.

Fig. 1. Au-Si band split of the (337)x2, (5511) facets and non-metallic nature of the (225) facets.

^[1] J. W. Dickinson, J. C. Moore and A. A. Baski, Surf. Sci. 561, 193 (2004).

^[2] J. R. Ahn, H. W. Yeom, E. S. Cho and C. Y. Park, Phys. Rev. B 69, 233311 (2004).

^[3] P. C. Snijders and H. H. Weitering, Rev. Mod. Phys. 82, 307 (2010).