RGO-TiO₂ nanocomposite with highly exposed {001} facets for photoelectrochemical performance and electrochemical determination of dopamine

Gregory Thien Soon How, Huang Nay Ming

Low Dimensional Materials Research Center, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia

Crystal facet engineering has attracted worldwide attention in the facet manipulation of TiO_2 surface properties. An improved synthesis solvothermal route has been employed for the formation of TiO_2 nanosheets with highly exposed {001} facets decorated on reduced graphene oxide (RGO) sheets. The RGO-TiO₂ nanocomposite could be materialized with high yield by following a stringently methodical yet simple approach. Photocurrent response of RGO-TiO₂ nanocomposite was discovered to outperform that of pure TiO₂ as a tenfold increase in photocurrent density was observed for the RGO-TiO₂ electrodes. This may be contributed by faster electron transport and delayed recombination of electron-hole pairs due to improved ionic interaction between titanium and carbon. In contrast to bare GCE, the RGO-TiO₂ nanocomposite modified glassy carbon electrode (GCE) displays reversible redox event and reduced peak-to-peak separation which indicates decreased overpotential, signifying the minimal use of energy to drive a reaction. The electrode manifests its use as a sensor for dopamine (DA) as it possesses a detection limit of 4 μ M over a satisfactory linear range of 2-200 μ M.