Evidence of ultraviolet transparency of graphene on SrTiO₃ induced by excitonic Fano anti-resonance

Pranjal Kumar Gogoi^{1,2,3}, Paolo E. Trevisanutto^{1,8}, Chan La-O-Vorakiat⁷, Ming Yang² Iman Santoso^{1,3,4}, Teguh Citra Asmara^{1,2,3}, Yuan Ping Feng^{1,2}, Kian Ping Loh^{1,4,5}, T. Venkatesan^{1,2,6}, Elbert E. M. Chia⁷, Antonio H. Castro Neto^{2,4}, <u>Andrivo Rusydi^{1,2,3}</u>

¹NUSNNI-NanoCore, NUS, Singapore 117576
²Department of Physics, NUS, Singapore 117542
³SSLS, NUS, 5 Research Link, Singapore 117603, Singapore
⁴Graphene Research Centre, Faculty of Science, NUS, Singapore 117546
⁵Department of Chemistry, NUS, Singapore 117543
⁶Department of Electrical and Computer Engineering, NUS, Singapore 117576
⁷Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, NTU, Singapore 637371
⁸ National Nanotechnology Laboratory (NNL), Istituto di Nanoscienze-CNR, Via per Arnesano 16, I-73100 Lecce, Italy

Graphene manifests prominent signatures of many-body effects of electron-electron and electron-hole interactions. This is distinctly revealed in the optical conductivity as red-shift and asymmetry of the van Hove peak observed at \sim 4.6 eV. Interestingly, due to its two-dimensional

Fig.1. Real part of the optical conductivity $(\sigma_1(\omega))$ and Fano line-shape analysis.

nature, one may expect to tailor its many-body effects by substrate properties. Here we present a intriguing phenomenon of the electronic bands of substrate interacting strongly with graphene bands. Using spectroscopy ellipsometry, for graphene on

SrTiO₃ we observe a drastic renormalization of the optical conductivity with almost full transparency in the ultraviolet region. Through phenomenological analysis this can be explained with Fano anti-resonance due to excitonic states residing between graphene conduction bands and new hybridized valence bands originating from carbon p_z -orbital of graphene and oxygen p_z -orbital of SrTiO₃. Ultrafast optical pump-optical probe measurements and density functional theory calculations further support existence of hybridization and also explain important features of the optical conductivity.