
The Activation of E-H Bonds (E = H or C) by an Amido-Digermyne with a Ge-Ge Single Bond

<u>Jiaye Li</u>, ¹ <u>Cameron Jones</u>, ¹ Gernot Frenking, ² Christian Schenk ¹

The activation of hydrogen (H_2) (either homolytically or heterolytically) has been extensively examined by both experimentalists and theoreticians, as this process has versatile applications to synthesis, catalysis and energy storage [1]. Previously, transition metal based complexes were widely applied as catalysts to activate H_2 . However, since 2005, main group element based complexes have emerged which can activate H_2 and other small molecules under mild conditions [2]. Such advances highlight the potential for main group systems to replace expensive, toxic transition metal compounds in many processes reliant on H-H bond activations. We present recent results concerning the synthesis of the first singly-bonded amido-digermyne, LGeGeL ($d_{Ge-Ge} = 2.7 \text{ Å}$) [3]. The subsequent reactivity investigations

indicate that LGeGeL is quite reactive towards gas molecules. For example, H_2 can be activated unprecedentedly by LGeGeL in either solution or the solid state at low temperature (-10°C). Moreover, LGeGeL is the first example of low oxidation state germanium compound that can reduce CO_2 to CO quantitatively at -40°C [4].

Fig. 1. Reactions of LGeGeL and H_2 or CO_2 (Ar* = $C_6H_2\{C(H)Ph_2\}_2Me-2,6,4$).

¹ School of Chemistry, Monash University, PO Box 23, Clayton, Melbourne, VIC, 3800, Australia.

² Fachbereich Chemie, Philipps-Universität Marburg, 35032, Marburg, Germany.

^[1] K. Gregory J, Journal of Organometallic Chemistry 2009, 694, 2648-2653.

⁽a) A. L. Kenward, W. E. Piers, Angewandte Chemie International Edition 2008, 47, 38-41; (b) D. Bourissou, O. Guerret, F. P. Gabbaï, G. Bertrand, Chemical Reviews 1999, 100, 39-92; (c) G. H. Spikes, J. C. Fettinger, P. P. Power, Journal of the American Chemical Society 2005, 127, 12232-12233; (d) Y. Peng, M. Brynda, B. D. Ellis, J. C. Fettinger, E. Rivard, P. P. Power, Chemical Communications 2008, 6042-6044; (e) D. W. Stephan, G. Erker, Angewandte Chemie International Edition 2010, 49, 46-76; (f) G. C. Welch, R. R. S. Juan, J. D. Masuda, D. W. Stephan, Science 2006, 314, 1124-1126.

^[3] J. Li, C. Schenk, C. Goedecke, G. Frenking, C. Jones, *Journal of the American Chemical Society* **2011**, *133*, 18622-18625.

^[4] J. Li, M. Hermann, G. Frenking, C. Jones, *Angewandte Chemie International Edition* **2012**, *51*, 8611-8614.